-
02 January 2021
Алгебра
- Автор: solovevaalena7
Вычислить площадь фигуры ограниченной линиями y=3x^2-1 и y=3x+5
-
-
-
02 January 2021
- Ответ оставил: dashasadkevich3668
Ответ:
Сначала надо нарисовать ускомую - это будет область, снизу ограниченная дугой параболы y=x^2-3*x, а сверху - отрезком прямой y=3*x-5.
Точки пересечения находим, приравняв левые части
x^2-3*x=3*x-5
Это квадратное уравнение, корни - это х=1 и х=5.
Площадь фигуры будет равна двойному интегралу: по х от 1 (нижний предел) до 5(верхний предел) .
и по у от x^2-3*x(нижний предел) до 3*x-5(верхний предел) .
Сначала интегрируем по у, получим 3*x-5-(x^2-3*x), т. е. -x^2+6*x-5.
Потом интегрируем по х,
получим неопределенный интеграл -x^3/3+3*x^2-5х, в который подставим верхний предел х=5 и нижний предел х=1, получим:
-5^3/3+3*5^2-5*5 - (-1^3/3+3*1^2-5*1)=32/3, то есть 10 2/3.
-
-
- НЕ НАШЛИ ОТВЕТ?
Если вас не устраивает ответ или его нет, то попробуйте воспользоваться поиском на сайте и найти похожие ответы по предмету школьной программы: алгебра.
На сегодняшний день (27.02.2025) наш сайт содержит 16368 вопросов, по теме: алгебра. Возможно среди них вы найдете подходящий ответ на свой вопрос. -
Нажимая на кнопку "Ответить на вопрос", я даю согласие на обработку персональных данных
Ответить на вопрос